Conditional Value-at-Risk for Random Immediate Reward Variables in Markov Decision Processes
نویسندگان
چکیده
منابع مشابه
Conditional Value-at-Risk for Random Immediate Reward Variables in Markov Decision Processes
We consider risk minimization problems for Markov decision processes. From a standpoint of making the risk of random reward variable at each time as small as possible, a risk measure is introduced using conditional value-at-risk for random immediate reward variables in Markov decision processes, under whose risk measure criteria the risk-optimal policies are characterized by the optimality equa...
متن کاملconditional copula-garch methods for value at risk of portfolio: the case of tehran stock exchange market
ارزش در معرض ریسک یکی از مهمترین معیارهای اندازه گیری ریسک در بنگاه های اقتصادی می باشد. برآورد دقیق ارزش در معرض ریسک موضوع بسیارمهمی می باشد و انحراف از آن می تواند موجب ورشکستگی و یا عدم تخصیص بهینه منابع یک بنگاه گردد. هدف اصلی این مطالعه بررسی کارایی روش copula-garch شرطی در برآورد ارزش در معرض ریسک پرتفویی متشکل از دو سهام می باشد و ارزش در معرض ریسک بدست آمده با روشهای سنتی برآورد ارزش د...
Conditional Value-at-Risk Minimization in Finite State Markov Decision Processes: Continuity and Compactness
This study is concerned with the dynamic risk-analysis for finite state Markov decision processes. As a measure of risk, we consider conditional value-at-risk(CVaR) for the real value of the discounted total reward from a policy, under whose criterion risk optimal or deterministic policies are defined. The risk problem is equivalently redefined as a non-linear optimization problem on the attain...
متن کاملMarkov Decision Processes with Average-Value-at-Risk criteria
P We investigate the problem of minimizing the Average-Value-at-Risk (AV aRτ ) of the discounted cost over a finite and an infinite horizon which is generated by a Markov Decision Process (MDP). We show that this problem can be reduced to an ordinary MDP with extended state space and give conditions under which an optimal policy exists. We also give a time-consistent interpretation of the AV aR...
متن کاملMarkov Decision Processes with Arbitrary Reward Processes
We consider a learning problem where the decision maker interacts with a standard Markov decision process, with the exception that the reward functions vary arbitrarily over time. We show that, against every possible realization of the reward process, the agent can perform as well—in hindsight—as every stationary policy. This generalizes the classical no-regret result for repeated games. Specif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: American Journal of Computational Mathematics
سال: 2011
ISSN: 2161-1203,2161-1211
DOI: 10.4236/ajcm.2011.13021